
Abstract: An evolutionary neural network modeling 

approach for software cumulative failure prediction based 

on feed-forward neural network is proposed. A real coded 

genetic algorithm is used to optimize the mean square of 

the error produced by training a neural network 

established by Aljahdali S. [3]. In this paper we present a 

real coded genetic algorithm that uses the appropriate 

operators for this encoding type to train feed-forward 

neural network. We describe the genetic algorithm and we 

also experimentally compare our approach with the back 

propagation learning algorithm for the regression model 

order 4. Numerical results show that both the goodness-of-

fit and the next-step-predictability of our proposed 

approach have greater accuracy in predicting software 

cumulative failure compared to other approaches. 
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I. INTRODUCTION 

Software reliability is defined as the probability of failure free 

software operation for a specified period of time in a specified 

environment [1]. Society’s reliance on large complex systems 

mandates high reliability. Reliable software is a necessary 

component. Controlling faults in software requires that one 

can predict problems early enough to take preventive action. 

In the past 35 years more than 100 software reliability models 

have been developed to solve reliability models [19]. Most of 

these models as the models of software reliability growth 

depend on a certain a priori assumptions about the nature of 

software faults and the stochastic behavior of software process 

[5]-[6]. As a result, different models have different predictive 

performance at different testing phases across various projects. 

A single universal model that can provide highly accurate 

predictions under all circumstances without any assumptions 

is most desirable [22]-[14]. Neural network approach has 

proven to be a universal approximator for any non-linear 

continuous function with an arbitrary accuracy [6]-[16]-[17]-

[18]. Consequently, it has become en alternative method in 

software reliability modeling, evolution and prediction. 

Karunanithi et al. [14]-[15] were the first to propose using 

neural network approach in software reliability prediction. 

Aljahdali et al. [4]-[3], Adnan et al. [2], Park et al. [22] and 

Liang et al. [17]-[18] have also mad contributions to software 

reliability predictions using neural networks, and have gained 

better results compared to the traditional analytical models 

with respect to predictive performance. 

The most popular training algorithm for feed-forward neural 

networks is the back-propagation algorithm, the back 

propagation learning algorithm provides a way to train 

multilayered feed-forward neural networks [3] but the optimal 

training of neural network using conventional gradient-descent 

methods is complicated due to many attractors in the state 

space. In this paper we have developed a real coded genetic 

algorithm (RCGA) as an alternative to train the neural network 

that optimizes the error made by the neural network.  

II.  SOFTWARE RELIABILITY DATA SET 

The Software Reliability Dataset was compiled by John Musa 

of Bell Telephone Laboratories [7]. His objective was to 

collect failure interval data to assist software managers in 

monitoring test status and predicting schedules and to assist 

software researchers in validating software reliability models. 

These models are applied in the discipline of Software 

Reliability Engineering. The dataset consists of software 

failure data on 16 projects. Careful controls were employed 

during data collection to ensure that the data would be of high 

quality. The data was collected throughout the mid 1970s. It 

represents projects from a variety of applications including 

real time command and control, word processing, commercial, 

and military applications. In our case, we used data from three 

different projects. They are Military, Real Time Control and 

Operating System. The failure data were initially stored in 

arrays, ordered by day of occurrence so that it could be 

processed. 

III. NEURAL NETWORK ARCHITECTURE 

The architecture of the network used for modeling software 

reliability problem is a multi-layer feed-forward network. It 

consists of an input layer, one hidden layer and an output layer 

[4]-[3]. The input layer contains a number of neurons equal to 

the number of delayed measurements allowed to build neural 

networks model in our case, there are four inputs to the 

network, they are C(k-1), C(k-2), C(k-3), and C (k-4).  C (k-1) 

is the observed faults one day before the current day. The 

hidden layer consists of two nonlinear neurons and two linear 

neurons. The output layer consists of one output neuron 

producing the estimated value of the fault. There is no direct 

connection between the network input and output. 

Connections occur only through the hidden layer. The hidden 

units are fully connected to both the input and output. The 

structure of the adopted neural network is shown in figure 1. 
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IV. THE GENETIC ALGORITHM 

The genetic algorithm was developed and formalized by 

Holland [13]. It was further developed and shown to have 

wide applicability by Goldberg [10]. Schaffer, et al. [24] 

showed that it could be used to improve the learning ability of 

neural networks for simple pattern discrimination on a small 

data set. Evolving the weight set for a neural net with the 

inverted error as a fitness function has also been studied 

[12].Ways of combining GAs with NNs to form improved 

hybrid algorithms constitute a major research direction. For a 

good introduction and examination of GAs, see Michalewicz 

[20].  

Although there are many possible varieties on the basic GAs, 

the operational of every genetic algorithm is described in the 

following steps: 

1. Randomly create an initial population of chromosomes. 

2. Compute the fitness of every member of the current 

population. 

3. If there is a member of the current population that 

satisfies the problem requirements then stop. Otherwise 

continue to the next step. 

4. Create an intermediate population by extracting members 

from the current population using a selection operator. 

5. Generate a new population by applying the genetic 

operators of crossover and mutation to this intermediate 

population. 

6. Go back to step 2. 

V. REAL CODED GENETIC ALGORITHMS 

The most common representation in GAs is binary [11]. The 

chromosomes consists of a set of genes, which are generally 

characters belonging to an alphabet {0, 1}. Therefore, a 

chromosome is a vector x consisting of l genes ci: 

x=(c1,c2,…,cl), ci={0,1}, Where l is the length of the 

chromosome. 

However in the optimization problems of parameters with 

variables in continuous domains, it is more natural to represent 

the genes directly as a real numbers since the representation of 

solution are very close to the natural formulation, i.e. there are 

no differences between the genotype and the phenotype. The 

use of this real-coding in numerical optimization on 

continuous domains appears in Michalewicz [20].  

In this case, a chromosome is a vector of floating point 

numbers. The chromosome length is the vector length of the 

solution of the problem; thus, each gene represents a variable 

of the problem. The gene values are forced to remain in the 

interval established by the variables they represent, so many 

genetic operators are developed for them, such as, Flat 

crossover [23], Arithmetic crossover [21] and BLX-α 

crossover [9] for the crossover operators and Random 

mutation and non-uniform mutation [21]. 

 

VI. THE REAL CODED GENETIC ALGORITHM TO TRAIN 

NEURAL NETWORK FOR SOFTWARE RELIABILITY 

PREDICTION 

As mentioned above, real coding is the most suitable coding 

for continuous domains. Since our goal is feed-forward neural 

network training which predicts the cumulative future faults in 

the software, it appears logical to use this coding and genetic 

operators associated to it. Among the advantages of using real-

valued coding over binary coding is increased precision. 

Binary coding of real-valued numbers can suffer loss of 

precision depending on the number of bits used to represent 

one number. Moreover, in real-valued coding chromosome 

string become much shorter. For real-valued optimization 

problems, real-valued coding is simply much easier and more 

efficient to implement, since it is conceptually closer to the 

problem space. In particular, our aim is to train a feed-forward 

NN to predict future faults in the software from the previous 

four discovered faults. 

A chromosome consists of all the network weights. One gene 

of a chromosome represents a single weight value. In our case 

there are 4x4 weights for the input-layer plus 4x1 biases plus 

4x1 weights plus 1x1 biases for the output-layer so, the length 

of the chromosome is l= 4x4 + 4x1 + 4x1 + 1x1 = 25. The 

weights and biases of the neural network are placed on a 

chromosome as shown in figure 2. 

 
 
Figure 2: The chromosomal representation of the neural network 

 

Fitness function: the fitness function should reflect the 

individual’s performance in the current problem. We have 

chosen 1/(1+mse) as a fitness function Eq. (2), where mse is 

the mean squared error during training defined in Eq (1). 
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Figure 1: Feed-forward neural network structure 
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Selection mechanism: The roulette wheel selection is used to 

create the intermediate population. For each chromosome Ci in 

a population P, the probability ps(Ci), of including a copy of 

this chromosome in the intermediate population P′ is 

calculated as in Eq. (3) 
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Where P is the number of individuals in the population P.  

 

Creating a new generation by applying the genetic operators 
to the intermediate population. Once the intermediate 

population is created, the next step is for the population of the 

next generation by applying the crossover and mutation 

operators on the chromosomes in P′ . Two chromosomes are 

randomly selected from this intermediate population and serve 

as parents. Depending upon a probabilistic chance pc 

(crossover rate), it is decided whether these two will be 

crossed over. After applying these genetic operators, the 

resulting chromosome is inserted into the new population. 

This step is repeated until the new population reaches the 

population size less two individuals. Moreover, the two best 

individuals in the current population are included in the new 

population (elitist strategy) [8], to make sure that the best-

performing chromosome always survives intact from one 

generation to the next. The crossover used is the BLX-α 

crossover with the crossover rate pc = 0.7 and the parameter α 

= 0.5. After the application of the crossover operator, each of 

the genes of the resulting chromosomes is subject to possible 

mutation, which depends on a probabilistic chance pm, the 

mutation rate. The mutation operator used is non-uniform 

mutation with the mutation rate pm=0.06 and the parameter 

b=5. 

VII. THE REAL CODED GENETIC ALGORITHM TRAINING AND 

TESTING RESULTS 

The initial weights were randomly chosen in the interval [0, 

1]. For each project we performed a number of simulations 

with a population of 200 individuals and a maximum of 

generation equal to Gmax. After the training process the 

Normalize Root Square Error (NRMSE, see Eq. 4) is computed 

to compare the results obtained by real coded genetic 

algorithm with these obtained by the back-propagation 

learning algorithm.  
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The results of NRMSE obtained, by the back-propagation 

learning algorithm and the regression model in test phase is 

given in a table 1. 

 

 

 

 

 

 

Table 1 : A comparison between Regression model order 4 and neural 

network model in testing case (NRMSE)[3]. 

Project 

Name 
Military 

Real Time 

Control 

Operating 

System 

Number of 

Faults 
101 136 277 

Training 

Data 
71 96 194 

Testing Data 101 136 277 

Regression 

Model 
3.1434 1.7086 1.0659 

Neural 

Networks 
1.0755 0.5644 0.7714 

The results of MSE and NRMSE obtained, by the training with 

our real coded genetic algorithm in training and testing phases 

are given in table 2. 

Table 2: Results for the MSE and NRMSE obtained using NNs trained by 

RCGA in the training and testing phases. 

Project 

Name 
Military 

Real Time 

Control 

Operating 

System 

Number of 

Faults 
101 136 277 

Training 

Data 
71 96 194 

MSE 2.859155 2.0515463 2.0515463 

NRMSE 2.0635e-4 5.3898e-4 3.4186e-5 

Testing Data 101 136 277 

MSE 4.2277226 2.6617646 3.0758123 

NRMSE 4.7373e-5 3.1216e-4 1.5705e-5 

In figure 3 to 14 we are showing the training, the error 

difference and the testing results for various projects using the 

neural network trained by our real coded genetic algorithm.  

 
Figure 3: Actual and Predicted Faults in Training phase: Military 

Application. 
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Figure 4: Prediction Error in training phase: Military Application. 

 
Figure 5: Actual and Predicted Faults in Testing phase: Military 

Application. 

 
Figure 6: Prediction Error in testing phase: Military Application. 

 
Figure 7: Actual and Predicted Faults in Training phase: Real Time 

Control. 

 
Figure 8: Prediction Error in training phase: Real Time Control. 

 
Figure 9: Actual and Predicted Faults in Testing phase: Real Time 

Control. 

 
Figure 10: Prediction Error in testing phase: Real Time Control. 
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Figure 11: Actual and Predicted Faults in Training phase: Operating 

System 

 
Figure 12: Prediction error in training phase: Operating System 

 

 
Figure 13: Actual and Predicted Faults in Testing phase: Operating 

System. 

 
Figure 14: Prediction error in testing phase: Operating System. 

 

VIII. CONCLUSION 

In this paper, an evolutionary neural network modeling 

approach for software cumulative failure prediction is 

proposed. Genetic algorithm is used to learn the neural 

network by optimizing the mean square error produced by the 

neural network.  

Experimental results show that our proposed approach adapts 

well across different projects, and has a better performance 

compared to the results obtained by neural network models for 

cumulative failure, learned by the back-propagation learning 

algorithm.  
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