
Abstract: An evolutionary neural network modeling

approach for software cumulative failure prediction based

on feed-forward neural network is proposed. A real coded

genetic algorithm is used to optimize the mean square of

the error produced by training a neural network

established by Aljahdali S. [3]. In this paper we present a

real coded genetic algorithm that uses the appropriate

operators for this encoding type to train feed-forward

neural network. We describe the genetic algorithm and we

also experimentally compare our approach with the back

propagation learning algorithm for the regression model

order 4. Numerical results show that both the goodness-of-

fit and the next-step-predictability of our proposed

approach have greater accuracy in predicting software

cumulative failure compared to other approaches.

Keywords: Genetic Algorithms, Real Coded Genetic

Algorithms, Feed-forward Neural Networks, Software

Reliability.

I. INTRODUCTION

Software reliability is defined as the probability of failure free

software operation for a specified period of time in a specified

environment [1]. Society’s reliance on large complex systems

mandates high reliability. Reliable software is a necessary

component. Controlling faults in software requires that one

can predict problems early enough to take preventive action.

In the past 35 years more than 100 software reliability models

have been developed to solve reliability models [19]. Most of

these models as the models of software reliability growth

depend on a certain a priori assumptions about the nature of

software faults and the stochastic behavior of software process

[5]-[6]. As a result, different models have different predictive

performance at different testing phases across various projects.

A single universal model that can provide highly accurate

predictions under all circumstances without any assumptions

is most desirable [22]-[14]. Neural network approach has

proven to be a universal approximator for any non-linear

continuous function with an arbitrary accuracy [6]-[16]-[17]-

[18]. Consequently, it has become en alternative method in

software reliability modeling, evolution and prediction.

Karunanithi et al. [14]-[15] were the first to propose using

neural network approach in software reliability prediction.

Aljahdali et al. [4]-[3], Adnan et al. [2], Park et al. [22] and

Liang et al. [17]-[18] have also mad contributions to software

reliability predictions using neural networks, and have gained

better results compared to the traditional analytical models

with respect to predictive performance.

The most popular training algorithm for feed-forward neural

networks is the back-propagation algorithm, the back

propagation learning algorithm provides a way to train

multilayered feed-forward neural networks [3] but the optimal

training of neural network using conventional gradient-descent

methods is complicated due to many attractors in the state

space. In this paper we have developed a real coded genetic

algorithm (RCGA) as an alternative to train the neural network

that optimizes the error made by the neural network.

II. SOFTWARE RELIABILITY DATA SET

The Software Reliability Dataset was compiled by John Musa

of Bell Telephone Laboratories [7]. His objective was to

collect failure interval data to assist software managers in

monitoring test status and predicting schedules and to assist

software researchers in validating software reliability models.

These models are applied in the discipline of Software

Reliability Engineering. The dataset consists of software

failure data on 16 projects. Careful controls were employed

during data collection to ensure that the data would be of high

quality. The data was collected throughout the mid 1970s. It

represents projects from a variety of applications including

real time command and control, word processing, commercial,

and military applications. In our case, we used data from three

different projects. They are Military, Real Time Control and

Operating System. The failure data were initially stored in

arrays, ordered by day of occurrence so that it could be

processed.

III. NEURAL NETWORK ARCHITECTURE

The architecture of the network used for modeling software

reliability problem is a multi-layer feed-forward network. It

consists of an input layer, one hidden layer and an output layer

[4]-[3]. The input layer contains a number of neurons equal to

the number of delayed measurements allowed to build neural

networks model in our case, there are four inputs to the

network, they are C(k-1), C(k-2), C(k-3), and C (k-4). C (k-1)

is the observed faults one day before the current day. The

hidden layer consists of two nonlinear neurons and two linear

neurons. The output layer consists of one output neuron

producing the estimated value of the fault. There is no direct

connection between the network input and output.

Connections occur only through the hidden layer. The hidden

units are fully connected to both the input and output. The

structure of the adopted neural network is shown in figure 1.

Evolutionary Neural Network Prediction for

Cumulative Failure Modeling
M. Benaddy

1
, M. Wakrim

1
 & S. Aljahdali

2

1 : Dept. of Math. & Info. Equipe MMS, Ibn Zohr University Morocco. benaddym@yahoo.fr

2: Taif University Saudi Arabia

978-1-4244-3806-8/09/$25.00 © 2009 IEEE 179

IV. THE GENETIC ALGORITHM

The genetic algorithm was developed and formalized by

Holland [13]. It was further developed and shown to have

wide applicability by Goldberg [10]. Schaffer, et al. [24]

showed that it could be used to improve the learning ability of

neural networks for simple pattern discrimination on a small

data set. Evolving the weight set for a neural net with the

inverted error as a fitness function has also been studied

[12].Ways of combining GAs with NNs to form improved

hybrid algorithms constitute a major research direction. For a

good introduction and examination of GAs, see Michalewicz

[20].

Although there are many possible varieties on the basic GAs,

the operational of every genetic algorithm is described in the

following steps:

1. Randomly create an initial population of chromosomes.

2. Compute the fitness of every member of the current

population.

3. If there is a member of the current population that

satisfies the problem requirements then stop. Otherwise

continue to the next step.

4. Create an intermediate population by extracting members

from the current population using a selection operator.

5. Generate a new population by applying the genetic

operators of crossover and mutation to this intermediate

population.

6. Go back to step 2.

V. REAL CODED GENETIC ALGORITHMS

The most common representation in GAs is binary [11]. The

chromosomes consists of a set of genes, which are generally

characters belonging to an alphabet {0, 1}. Therefore, a

chromosome is a vector x consisting of l genes ci:

x=(c1,c2,…,cl), ci={0,1}, Where l is the length of the

chromosome.

However in the optimization problems of parameters with

variables in continuous domains, it is more natural to represent

the genes directly as a real numbers since the representation of

solution are very close to the natural formulation, i.e. there are

no differences between the genotype and the phenotype. The

use of this real-coding in numerical optimization on

continuous domains appears in Michalewicz [20].

In this case, a chromosome is a vector of floating point

numbers. The chromosome length is the vector length of the

solution of the problem; thus, each gene represents a variable

of the problem. The gene values are forced to remain in the

interval established by the variables they represent, so many

genetic operators are developed for them, such as, Flat

crossover [23], Arithmetic crossover [21] and BLX-α

crossover [9] for the crossover operators and Random

mutation and non-uniform mutation [21].

VI. THE REAL CODED GENETIC ALGORITHM TO TRAIN

NEURAL NETWORK FOR SOFTWARE RELIABILITY

PREDICTION

As mentioned above, real coding is the most suitable coding

for continuous domains. Since our goal is feed-forward neural

network training which predicts the cumulative future faults in

the software, it appears logical to use this coding and genetic

operators associated to it. Among the advantages of using real-

valued coding over binary coding is increased precision.

Binary coding of real-valued numbers can suffer loss of

precision depending on the number of bits used to represent

one number. Moreover, in real-valued coding chromosome

string become much shorter. For real-valued optimization

problems, real-valued coding is simply much easier and more

efficient to implement, since it is conceptually closer to the

problem space. In particular, our aim is to train a feed-forward

NN to predict future faults in the software from the previous

four discovered faults.

A chromosome consists of all the network weights. One gene

of a chromosome represents a single weight value. In our case

there are 4x4 weights for the input-layer plus 4x1 biases plus

4x1 weights plus 1x1 biases for the output-layer so, the length

of the chromosome is l= 4x4 + 4x1 + 4x1 + 1x1 = 25. The

weights and biases of the neural network are placed on a

chromosome as shown in figure 2.

Figure 2: The chromosomal representation of the neural network

Fitness function: the fitness function should reflect the

individual’s performance in the current problem. We have

chosen 1/(1+mse) as a fitness function Eq. (2), where mse is

the mean squared error during training defined in Eq (1).

2)ˆ(
1
∑ −= ii

n
mse ββ (1)

Where n is the number of training faults used during the

training process. iβ And iβ̂ are the actual and the predicted

output respectively during the learning process.

mse
fitness

+
=

1

1
 (2)

Hidden-layer

54,53,52,51,544,43,42,41,434,33,32,31,324,23,22,21,214,13,12,11,1 bwwwwbwwwwbwwwwbwwwwbwwww

Output-layer

Figure 1: Feed-forward neural network structure

i j

Input layer
Hidden layer

Output layer

4

2

3

1

180

Selection mechanism: The roulette wheel selection is used to

create the intermediate population. For each chromosome Ci in

a population P, the probability ps(Ci), of including a copy of

this chromosome in the intermediate population P′ is

calculated as in Eq. (3)

∑
=

=
P

j

j

i

is

Cfitness

Cfitness
Cp

1

)(

)(
)((3)

Where P is the number of individuals in the population P.

Creating a new generation by applying the genetic operators
to the intermediate population. Once the intermediate

population is created, the next step is for the population of the

next generation by applying the crossover and mutation

operators on the chromosomes in P′ . Two chromosomes are

randomly selected from this intermediate population and serve

as parents. Depending upon a probabilistic chance pc

(crossover rate), it is decided whether these two will be

crossed over. After applying these genetic operators, the

resulting chromosome is inserted into the new population.

This step is repeated until the new population reaches the

population size less two individuals. Moreover, the two best

individuals in the current population are included in the new

population (elitist strategy) [8], to make sure that the best-

performing chromosome always survives intact from one

generation to the next. The crossover used is the BLX-α

crossover with the crossover rate pc = 0.7 and the parameter α

= 0.5. After the application of the crossover operator, each of

the genes of the resulting chromosomes is subject to possible

mutation, which depends on a probabilistic chance pm, the

mutation rate. The mutation operator used is non-uniform

mutation with the mutation rate pm=0.06 and the parameter

b=5.

VII. THE REAL CODED GENETIC ALGORITHM TRAINING AND

TESTING RESULTS

The initial weights were randomly chosen in the interval [0,

1]. For each project we performed a number of simulations

with a population of 200 individuals and a maximum of

generation equal to Gmax. After the training process the

Normalize Root Square Error (NRMSE, see Eq. 4) is computed

to compare the results obtained by real coded genetic

algorithm with these obtained by the back-propagation

learning algorithm.

∑

∑

=

=

−

=
n

i

n

i

i

ii

n
NRMSE

1

2

1

2

))((

))(ˆ)((
1

β

ββ

 (4)

The results of NRMSE obtained, by the back-propagation

learning algorithm and the regression model in test phase is

given in a table 1.

Table 1 : A comparison between Regression model order 4 and neural

network model in testing case (NRMSE)[3].

Project

Name
Military

Real Time

Control

Operating

System

Number of

Faults
101 136 277

Training

Data
71 96 194

Testing Data 101 136 277

Regression

Model
3.1434 1.7086 1.0659

Neural

Networks
1.0755 0.5644 0.7714

The results of MSE and NRMSE obtained, by the training with

our real coded genetic algorithm in training and testing phases

are given in table 2.

Table 2: Results for the MSE and NRMSE obtained using NNs trained by

RCGA in the training and testing phases.

Project

Name
Military

Real Time

Control

Operating

System

Number of

Faults
101 136 277

Training

Data
71 96 194

MSE 2.859155 2.0515463 2.0515463

NRMSE 2.0635e-4 5.3898e-4 3.4186e-5

Testing Data 101 136 277

MSE 4.2277226 2.6617646 3.0758123

NRMSE 4.7373e-5 3.1216e-4 1.5705e-5

In figure 3 to 14 we are showing the training, the error

difference and the testing results for various projects using the

neural network trained by our real coded genetic algorithm.

Figure 3: Actual and Predicted Faults in Training phase: Military

Application.

181

Figure 4: Prediction Error in training phase: Military Application.

Figure 5: Actual and Predicted Faults in Testing phase: Military

Application.

Figure 6: Prediction Error in testing phase: Military Application.

Figure 7: Actual and Predicted Faults in Training phase: Real Time

Control.

Figure 8: Prediction Error in training phase: Real Time Control.

Figure 9: Actual and Predicted Faults in Testing phase: Real Time

Control.

Figure 10: Prediction Error in testing phase: Real Time Control.

182

Figure 11: Actual and Predicted Faults in Training phase: Operating

System

Figure 12: Prediction error in training phase: Operating System

Figure 13: Actual and Predicted Faults in Testing phase: Operating

System.

Figure 14: Prediction error in testing phase: Operating System.

VIII. CONCLUSION

In this paper, an evolutionary neural network modeling

approach for software cumulative failure prediction is

proposed. Genetic algorithm is used to learn the neural

network by optimizing the mean square error produced by the

neural network.

Experimental results show that our proposed approach adapts

well across different projects, and has a better performance

compared to the results obtained by neural network models for

cumulative failure, learned by the back-propagation learning

algorithm.

REFERENCES
[1] ANSI /IEEE, "Standard Glossary of Software Engineering

Terminology," STD-729-1991, ANSI /IEEE, 1991.

[2] W.A. Adnan, M.H. Yaacob, “An integrated neural-fuzzy system of
software reliability prediction.” In: Proceeding of the First International
Conference on software Testing, Reliability and Quality Assurance,
New Delhi, India, 1994.

[3] S. Aljahdali, K. A. Buragga, “Evolutionary Neural Network Prediction
for Software Reliability Modeling” The 16th International Conference
on Software Engineering and Data Engineering (SEDE-2007).

[4] S. Aljahdali, A. Sheta and D. Rine, “Prediction of Software Reliability:
A Comparison between regression and neural network non-parametric
Models”, Proceeding of the IEEE/ACS Conference, 25-29, June 2001.

[5] K.Y. Cai, C.Y. Xen, M.L. Zhang, “A critical review on software
reliability modeling. Reliability Engineering Safety,” 1991.

[6] K.Y. Cai, L. Cai, W.D. Wang, Z.Y. Yu, D. Zhang, “On the Neural
Network approach in software reliability modeling,” J Syst Software
2001.

[7] Data & Analysis Centre for Software DACS
https://www.thedacs.com/databases/sled.

[8] K. De Jong “An Analysis of the Behavior of a class of Genetic Adaptive
Systems.” Doctorate dissertation, Dept. of Computer and
Communication Sciences, University of Michigan, Ann Arbor, 1975.

[9] L.J. Eshelman & J.D. Schaffer, “Real coded genetic algorithms and
interval schemata” In L. Durrel Whitely, Foundation of genetic
algorithms 2 (pp. 187-202). San Mateo: Morgan Kaufman.

[10] D.E Goldberg, “Genetic Algorithms in Search, Optimization and
Machine Learning”. Addison Wisley New York, 1989.

[11] D.E. Goldberg, “Real-coded genetic algorithms. Virtual alphabets and
blocking.” Complex Systems, 5, 1991, 139-167.

[12] R. Hochman et al., “Using the genetic algorithm to build optimal neural
networks for fault-prone module detection” In Proc. the 7th Int.
Symposium on Software Reliability Engineering 1996.

[13] J.H. Holand, “Adaptation in Natural and Artificial Systems”.
Cambridge, Mass: MIT press, 1975.

183

[14] N. Karunanithi, D. Withtely, Y.K. Malaiya, “Prediction of Software
Reliability using Connectionist Models,” IEEE Trans Software Eng
1992.

[15] N. Karunanithi, D. Withtely, Y.K. Malaiya, “Using neural networks in
reliability prediction,” IEEE Software 1992.

[16] E.H.F. Leung, H.K. Lam, S.H. Ling, P.K.S. Tam, “Tuning of the
structure and parameters of a neural network using an improved genetic
algorithm,” IEEE Trans Neural Networks 2003.

[17] T. Liang, N. Afzel, “Evolutionary neural network modeling for software
cumulative failure time prediction,” ELSEVIER Reliab Eng & Sys
Safety 2005.

[18] T. Liang, N. Afzel, “On-line prediction of software reliability using an
evolutionary connectionists model,” ELSEVIER the Journal of Sys &
Software 2005.

[19] M.R. Lyu, “Software Reliability Engineering: A Roadmap”. Future of
Software Engineering (FOSE’07) IEEE CS Press 2007.

[20] Z. Michalewicz, “Genetic Algorithms + Data Structures = Evolution
Programs”, Springer 1996.

[21] Z. Michalewicz, “Genetic Algorithms + Data Structures = Evolution
Programs”, New-York : Springer, 1992.

[22] J.Y. Park, S.U. Lee, J.H. Park, “Neural Network Modeling for Software
Reliability Prediction from Failure Time Data,” J Electr Eng Inform Sc
1999.

[23] N.J. Radcliffe, “Equivalence class of genetic algorithms” Complex
Systems, 1991, 5 (2), 183-205.

[24] J. D. Schaffer, R. A. Caruana, and L.J. Eshelman, “Using genetic search
to explicit the emergent behavior of neural networks.” In S. Forrest
(Ed.), Emergent Computation: Self-Organizing, Collective, and
Cooperative Phenomena in Natural and Artificial Computing Networks
(pp. 244-248). Cambridge, MA: MIT Press, 1991.

184

